Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons.

نویسندگان

  • Tao Liu
  • Tsugumi Fujita
  • Terumasa Nakatsuka
  • Eiichi Kumamoto
چکیده

Phospholipase A(2) (PLA(2)) activation enhances glutamatergic excitatory synaptic transmission in substantia gelatinosa (SG) neurons, which play a pivotal role in regulating nociceptive transmission in the spinal cord. By using melittin as a tool to activate PLA(2), we examined the effect of PLA(2) activation on spontaneous inhibitory postsynaptic currents (sIPSCs) recorded at 0 mV in SG neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique. Melittin enhanced the frequency and amplitude of GABAergic and glycinergic sIPSCs. The enhancement of GABAergic but not glycinergic transmission was largely depressed by Na(+) channel blocker tetrodotoxin or glutamate-receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione and/or dl-2-amino-5-phosphonovaleric acid) and also in a Ca(2+)-free Krebs solution. The effects of melittin on glycinergic sIPSC frequency and amplitude were dose-dependent with an effective concentration of approximately 0.7 microM for half-maximal effect and were depressed by PLA(2) inhibitor 4-bromophenacyl bromide or aristolochic acid. The melittin-induced enhancement of glycinergic transmission was depressed by lipoxygenase inhibitor nordihydroguaiaretic acid but not cyclooxygenase inhibitor indomethacin. These results indicate that the activation of PLA(2) in the SG enhances GABAergic and glycinergic inhibitory transmission in SG neurons. The former action is mediated by glutamate-receptor activation and neuronal activity increase, possibly the facilitatory effect of PLA(2) activation on excitatory transmission, whereas the latter action is due to PLA(2) and subsequent lipoxygenase activation and is independent of extracellular Ca(2+). It is suggested that PLA(2) activation in the SG could enhance not only excitatory but also inhibitory transmission, resulting in the modulation of nociception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn

Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmissi...

متن کامل

Actions of norepinephrine and isoflurane on inhibitory synaptic transmission in adult rat spinal cord substantia gelatinosa neurons.

Volatile inhaled anesthetics and nitrous oxide (N2O) are often used together in clinical practice to produce analgesia. Because the analgesic effect of N2O is, at least in part, mediated by norepinephrine (NE) release in the spinal cord, we examined the interaction between isoflurane (ISO) and NE in the adult rat spinal cord with respect to central nociceptive information processing. The effect...

متن کامل

Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices.

Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord s...

متن کامل

Changes in synaptic transmission of substantia gelatinosa neurons after spinal cord hemisection revealed by analysis using in vivo patch-clamp recording

BACKGROUND After spinal cord injury, central neuropathic pain develops in the majority of spinal cord injury patients. Spinal hemisection in rats, which has been developed as an animal model of spinal cord injury in humans, results in hyperexcitation of spinal dorsal horn neurons soon after the hemisection and thereafter. The hyperexcitation is likely caused by permanent elimination of the desc...

متن کامل

Developmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons

We have previously reported that oxytocin produces an inward current at a holding potential of -70 mV without a change in glutamatergic excitatory transmission in adult male rat spinal lamina II (substantia gelatinosa; SG) neurons that play a pivotal role in regulating nociceptive transmission. Oxytocin also enhanced GABAergic and glycinergic spontaneous inhibitory transmissions in a manner sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2008